Metformin Inhibits Tumorigenesis and Tumor Growth of Breast Cancer Cells by Upregulating miR-200c but Downregulating AKT2 Expression

نویسندگان

  • Jiali Zhang
  • Gefei Li
  • Yuan Chen
  • Lei Fang
  • Chen Guan
  • Fumao Bai
  • Mengni Ma
  • Jianxin Lyu
  • Qing H. Meng
چکیده

Background: Metformin has been reported to inhibit the growth of various types of cancers, including breast cancer. Yet the mechanisms underlying the anticancer effects of metformin are not fully understood. Growing evidence suggests that metformin's anticancer effects are mediated at least in part by modulating microRNAs, including miR-200c, which has a tumor suppressive role in breast cancer. We hypothesized that miR-200c has a role in the antitumorigenic effects of metformin on breast cancer cells. Methods: To delineate the role of miR-200c in the effects of metformin on breast cancer, plasmids containing pre-miR-200c or miR-200c inhibitor were transfected into breast cancer cell lines. The MDA-MB-231, BT549, MCF-7, and T-47-D cells' proliferation, apoptosis, migration, and invasion were assessed. The antitumor role of metformin in vivo was investigated in a MDA-MB-231 xenograft tumor model in SCID mice. Results: Metformin significantly inhibited the growth, migration, and invasion of breast cancer cells, and induced their apoptosis; these effects were dependent on both dose and time. Metformin also suppressed MDA-MB-231 tumor growth in SCID mice in vivo. Metformin treatment was associated with increased miR-200c expression and decreased c-Myc and AKT2 protein expression in both breast cancer cells and tumor tissues. Overexpression of miR-200c exhibited effects on breast cancer cells similar to those of metformin treatment. In contrast, inhibiting the expression of miR-200c increased the growth, migration, and invasion of MCF-7 and MDA-MB-231 cells. Conclusion: Metformin inhibits the growth and invasiveness of breast cancer cells by upregulation of miR-200c expression by targeting AKT2. These findings provide novel insight into the molecular functions of metformin that suggest its potential as an anticancer agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of miR-141, miR-200c, miR-30b Expression and Clinicopathological Features of Bladder Cancer

Bladder cancer (BC) ranks the second most common genitourinary tract malignant tumor with high mortality and 70% recurrence rate worldwide. MiRNAs expression has noticeable role in bladder tumorigenesis. The purpose of this study was to assess miR-200c, miR-30b and miR-141 in tissue samples of patients with BC and healthy adjacent tissue samples and their association with muscle invasion, grade...

متن کامل

A miR-200c/141-BMI1 autoregulatory loop regulates oncogenic activity of BMI1 in cancer cells

MicroRNAs (miRNAs) are known to function as oncomiRs or tumor suppressors and are important noncoding RNA regulators of oncogenesis. The miR-200c/141 locus on chromosome 12 encodes miR-200c and miR-141, two members of the miR-200 family, which have been shown to function as tumor suppressive miRNAs by targeting multiple oncogenic factors such as polycomb group protein BMI1. Here, we show that B...

متن کامل

Niclosamide inhibits colon cancer progression through downregulation of the Notch pathway and upregulation of the tumor suppressor miR-200 family

Colorectal cancer (CRC) is among the most frequent causes of cancer-related deaths worldwide. Thus, there is a need for the development of new therapeutic approaches for the treatment of CRC. Accumulating evidence has revealed that niclosamide, an anthelminthic drug, exerts antitumor activity in several types of cancer, including colon cancer. However, the underlying molecular mechanisms respon...

متن کامل

Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-β.

Although the epithelial-mesenchymal transition (EMT) is a normal process that occurs during development, it is thought to be associated with cancer progression and metastasis. Emerging evidence links mesenchymal stem cells (MSCs) in the tumor microenvironment with the occurrence of EMT in cancer progression. In this study, the human breast cancer cell line MCF7 was co-cultured with human adipos...

متن کامل

MicroRNA-200c increases radiosensitivity of human cancer cells with activated EGFR-associated signaling

MicroRNA-200c (miR-200c) recently was found to have tumor-suppressive properties by inhibiting the epithelial-mesenchymal transition (EMT) in several cancers. miR-200c also interacts with various cellular signaling molecules and regulates many important signaling pathways. In this study, we investigated the radiosensitizing effect of miR-200c and its mechanism in a panel of human cancer cell li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017